Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 64(6): 100354, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958720

RESUMEN

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.


Asunto(s)
Apolipoproteína E4 , Ácidos Docosahexaenoicos , Animales , Ratones , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Dieta , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Corteza Entorrinal/metabolismo , Ácidos Grasos Insaturados
2.
EBioMedicine ; 59: 102883, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32690472

RESUMEN

BACKGROUND: Past clinical trials of docosahexaenoic Acid (DHA) supplements for the prevention of Alzheimer's disease (AD) dementia have used lower doses and have been largely negative. We hypothesized that larger doses of DHA are needed for adequate brain bioavailability and that APOE4 is associated with reduced delivery of DHA and eicosapentaenoic acid (EPA) to the brain before the onset of cognitive impairment. METHODS: 33 individuals were provided with a vitamin B complex (1 mg vitamin B12, 100 mg of vitamin B6 and 800 mcg of folic acid per day) and randomized to 2,152 mg of DHA per day or placebo over 6 months. 26 individuals completed both lumbar punctures and MRIs, and 29 completed cognitive assessments at baseline and 6 months. The primary outcome was the change in CSF DHA. Secondary outcomes included changes in CSF EPA levels, MRI hippocampal volume and entorhinal thickness; exploratory outcomes were measures of cognition. FINDINGS: A 28% increase in CSF DHA and 43% increase in CSF EPA were observed in the DHA treatment arm compared to placebo (mean difference for DHA (95% CI): 0.08 µg/mL (0.05, 0.10), p<0.0001; mean difference for EPA: 0.008 µg/mL (0.004, 0.011), p<0.0001). The increase in CSF EPA in non-APOE4 carriers after supplementation was three times greater than APOE4 carriers. The change in brain volumes and cognitive scores did not differ between groups. INTERPRETATION: Dementia prevention trials using omega-3 supplementation doses equal or lower to 1 g per day may have reduced brain effects, particularly in APOE4 carriers. TRIAL REGISTRATION: NCT02541929. FUNDING: HNY was supported by R01AG055770, R01AG054434, R01AG067063 from the National Institute of Aging and NIRG-15-361854 from the Alzheimer's Association, and MGH by the L. K. Whittier Foundation. This work was also supported by P50AG05142 (HCC) from the National Institutes of Health. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/psicología , Apolipoproteína E4/genética , Cognición/efectos de los fármacos , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
3.
J Alzheimers Dis ; 74(3): 975-990, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116250

RESUMEN

BACKGROUND: Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) play key roles in several metabolic processes relevant to Alzheimer's disease (AD) pathogenesis and neuroinflammation. Carrying the APOEɛ4 allele (APOE4) accelerates omega-3 polyunsaturated fatty acid (PUFA) oxidation. In a pre-planned subgroup analysis of the Alzheimer's Disease Cooperative Study-sponsored DHA clinical trial, APOE4 carriers with mild probable AD had no improvements in cognitive outcomes compared to placebo, while APOE 4 non-carriers showed a benefit from DHA supplementation. OBJECTIVE: We sought to clarify the effect of APOEɛ4/ɛ4 on both the ratio of plasma DHA and EPA to AA, and on hippocampal volumes after DHA supplementation. METHODS: Plasma fatty acids and APOE genotype were obtained in 275 participants randomized to 18 months of DHA supplementation or placebo. A subset of these participants completed brain MRI imaging (n = 86) and lumbar punctures (n = 53). RESULTS: After the intervention, DHA-treated APOEɛ3/ɛ3 and APOEɛ2/ɛ3 carriers demonstrated significantly greater increase in plasma DHA/AA compared to ɛ4/ɛ4 carriers. APOEɛ2/ɛ3 had a greater increase in plasma EPA/AA and less decline in left and right hippocampal volumes compared to compared to ɛ4/ɛ4 carriers. The change in plasma and cerebrospinal fluid DHA/AA was strongly correlated. Greater baseline and increase in plasma EPA/AA was associated with a lower decrease in the right hippocampal volume, but only in APOE 4 non-carriers. CONCLUSION: The lower increase in plasma DHA/AA and EPA/AA in APOEɛ4/ɛ4 carriers after DHA supplementation reduces brain delivery and affects the efficacy of DHA supplementation.


Asunto(s)
Apolipoproteínas E/genética , Ácido Araquidónico/sangre , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/uso terapéutico , Ácido Eicosapentaenoico/sangre , Hipocampo/diagnóstico por imagen , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Suplementos Dietéticos , Ácidos Grasos/sangre , Ácidos Grasos Omega-3/metabolismo , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Caracteres Sexuales
4.
JAMA Neurol ; 74(3): 339-347, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114437

RESUMEN

IMPORTANCE: The apolipoprotein E ε4 (APOE4) allele identifies a unique population that is at significant risk for developing Alzheimer disease (AD). Docosahexaenoic acid (DHA) is an essential ω-3 fatty acid that is critical to the formation of neuronal synapses and membrane fluidity. Observational studies have associated ω-3 intake, including DHA, with a reduced risk for incident AD. In contrast, randomized clinical trials of ω-3 fatty acids have yielded mixed and inconsistent results. Interactions among DHA, APOE genotype, and stage of AD pathologic changes may explain the mixed results of DHA supplementation reported in the literature. OBSERVATIONS: Although randomized clinical trials of ω-3 in symptomatic AD have had negative findings, several observational and clinical trials of ω-3 in the predementia stage of AD suggest that ω-3 supplementation may slow early memory decline in APOE4 carriers. Several mechanisms by which the APOE4 allele could alter the delivery of DHA to the brain may be amenable to DHA supplementation in predementia stages of AD. Evidence of accelerated DHA catabolism (eg, activation of phospholipases and oxidation pathways) could explain the lack of efficacy of ω-3 supplementation in AD dementia. The association of cognitive benefit with DHA supplementation in predementia but not AD dementia suggests that early ω-3 supplementation may reduce the risk for or delay the onset of AD symptoms in APOE4 carriers. Recent advances in brain imaging may help to identify the optimal timing for future DHA clinical trials. CONCLUSIONS AND RELEVANCE: High-dose DHA supplementation in APOE4 carriers before the onset of AD dementia can be a promising approach to decrease the incidence of AD. Given the safety profile, availability, and affordability of DHA supplements, refining an ω-3 intervention in APOE4 carriers is warranted.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4/genética , Ácidos Docosahexaenoicos/administración & dosificación , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/prevención & control , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA